On Mean Pose and Variability of 3D Deformable Models

نویسندگان

  • Benjamin Allain
  • Jean-Sébastien Franco
  • Edmond Boyer
  • Tony Tung
چکیده

We present a novel methodology for the analysis of complex object shapes in motion observed by multiple video cameras. In particular, we propose to learn local surface rigidity probabilities (i.e., deformations), and to estimate a mean pose over a temporal sequence. Local deformations can be used for rigidity-based dynamic surface segmentation, while a mean pose can be used as a sequence keyframe or a cluster prototype and has therefore numerous applications, such as motion synthesis or sequential alignment for compression or morphing. We take advantage of recent advances in surface tracking techniques to formulate a generative model of 3D temporal sequences using a probabilistic framework, which conditions shape fitting over all frames to a simple set of intrinsic surface rigidity properties. Surface tracking and rigidity variable estimation can then be formulated as an ExpectationMaximization inference problem and solved by alternatively minimizing two nested fixed point iterations. We show that this framework provides a new fundamental building block for various applications of shape analysis, and achieves comparable tracking performance to state of the art surface tracking techniques on real datasets, even compared to approaches using strong kinematic priors such as rigid skeletons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

Shape Models of the Human Body for Distributed Inference

of “Shape Models of the Human Body for Distributed Inference” by Silvia Zuffi, Ph.D., Brown University, May 2015 In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can b...

متن کامل

3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface

Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...

متن کامل

FPM: Fine Pose Parts-Based Model with 3D CAD Models

We introduce a novel approach to the problem of localizing objects in an image and estimating their fine-pose. Given exact CAD models, and a few real training images with aligned models, we propose to leverage the geometric information from CAD models and appearance information from real images to learn a model that can accurately estimate fine pose in real images. Specifically, we propose FPM,...

متن کامل

Qualitative Pose Estimation by Discriminative Deformable Part Models

We present a discriminative deformable part model for the recovery of qualitative pose, inferring coarse pose labels (e.g., left, frontright, back), a task which we expect to be more robust to common confounding factors that hinder the inference of exact 2D or 3D joint locations. Our approach automatically selects parts that are predictive of qualitative pose and trains their appearance and def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014